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RFT1 Protein Affects Glycosylphosphatidylinositol (GPI)
Anchor Glycosylation*
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The membrane protein RFT1 is essential for normal protein
N-glycosylation, but its precise function is not known. RFT1
was originally proposed to translocate the glycolipid
Man5GlcNAc2-PP-dolichol (needed to synthesize N-glycan
precursors) across the endoplasmic reticulum membrane, but
subsequent studies showed that it does not play a direct role in
transport. In contrast to the situation in yeast, RFT1 is not
essential for growth of the parasitic protozoan Trypanosoma
brucei, enabling the study of its function in a null background.
We now report that lack of T. brucei RFT1 (TbRFT1) not only
affects protein N-glycosylation but also glycosylphosphatidyli-
nositol (GPI) anchor side-chain modification. Analysis by
immunoblotting, metabolic labeling, and mass spectrometry
demonstrated that the major GPI-anchored proteins of T. bru-
cei procyclic forms have truncated GPI anchor side chains in
TbRFT1 null parasites when compared with wild-type cells, a
defect that is corrected by expressing a tagged copy of TbRFT1
in the null background. In vivo and in vitro labeling experiments
using radiolabeled GPI precursors showed that GPI underglyco-
sylation was not the result of decreased formation of the GPI
precursor lipid or defective galactosylation of GPI intermedi-
ates in the endoplasmic reticulum, but rather due to modifica-
tions that are expected to occur in the Golgi apparatus. Unex-
pectedly, immunofluorescence microscopy localized TbRFT1 to
both the endoplasmic reticulum and the Golgi, consistent with
the proposal that TbRFT1 plays a direct or indirect role in
GPI anchor glycosylation in the Golgi apparatus. Our results
implicate RFT1 in a wider range of glycosylation processes
than previously appreciated.

Trypanosoma brucei is a human and animal parasite endemic
in sub-Saharan Africa causing sleeping sickness in humans and
nagana in livestock. The life cycle of the extracellular living

parasite comprises stages in the midgut and salivary gland of
the tsetse fly vector and in the blood of the mammalian host.
Alternating between the two organisms, the parasite not only
adapts its energy metabolism to the respective environment but
also its cell surface protein coat, which is a crucial determinant
of the parasite’s virulence. Apart from being a deadly pathogen
affecting the socio-economic development in endemic areas,
the parasite has emerged as an interesting model organism for
basic research. Two proliferative stages of T. brucei, blood-
stream trypomastigotes (bloodstream form parasites) and the
insect-stage procyclic trypomastigotes (procyclic form para-
sites), can easily be cultured in vitro. Biological features such as
trans-splicing (1), RNA editing (2), and antigenic variation (3)
were first described in Trypanosomatids and only later also
found in other eukaryotes. In addition, T. brucei was one of the
first organisms in which glycosylphosphatidylinositol (GPI)3

anchoring of cell surface proteins was described and extensively
explored (4, 5). Protein-linked GPI anchors consist of the con-
served core structure ethanolamine-HPO4-Man�1-2Man�1-
6Man�1-4GlcN�1-6-myo-inositol phospholipid with the amino
group of ethanolamine linked to the C terminus of the protein
(4, 5). A wide variety of linear and branched glycosyl substitu-
ents and additional ethanolamine phosphate moieties can be
attached to this core, depending on the protein to which the
anchor is attached and the organism in which it is synthesized.
The best-studied and most abundant GPI-anchored proteins of
T. brucei are the variant surface glycoproteins (VSGs) in blood-
stream form parasites (6) and the procyclins in procyclic forms
(7–9). Although the variant surface glycoprotein GPI core is
modified by rather simple galactosyl side chains (5), the GPI
anchors of procyclins are the largest and most complex anchors
known, comprising large branched N-acetyllactosamine
(Gal�1-4GlcNAc) and lacto-N-biose (Gal�1-3GlcNAc)-containing
side chains often capped with �2-3-linked sialic acid residues
(10, 11). Based on their C-terminal amino acid sequences con-
taining di- or pentapeptide tandem repeats, procyclins are
divided into two classes: EP (rich in Glu-Pro repeats) and
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GPEET (rich in Gly-Pro-Glu-Glu-Thr repeats) procyclins (11).
Two of the three subclasses of EP procyclins, EP1 and EP3,
contain a single N-glycosylation site (11, 12), whereas EP2 and
GPEET procyclins are not N-glycosylated. Interestingly, EP1
and EP3 procyclins are modified exclusively by a triantennary
Man5GlcNAc2 moiety (11), transferred to protein by oligosac-
charyltransferase TbSTT3B, which is expressed in procyclic
forms (13) and specifically uses mature Man9GlcNAc2-PP-
dolichol (mDLO) for transfer to N-glycosylation sites (14). Due
to the lack of a Golgi �-mannosidase in procyclic form trypano-
somes, Man9GlcNAc2 glycans can only be trimmed to trianten-
nary Man5-GlcNAc2 that are not further modified (15). Fig. 1A
shows a schematic representation of a typical N-glycosylated
EP procyclin.

RFT1 was first described in Saccharomyces cerevisiae as a
protein “requiring fifty-three,” i.e. human p53, in a screen of
mutants that could be rescued by heterologous expression of
p53 (16). Only later, yeast RFT1 (Rft1p) was found to play an
essential role in protein N-glycosylation (17). The multi-pass
transmembrane protein was reported to be localized in the
endoplasmic reticulum (ER) of yeast and human cells (17, 18),
although no corresponding localization data have been pub-
lished. The accumulation of the dolichol-linked oligoman-
nose intermediate Man5GlcNAc2-PP-dolichol (M5-DLO) in
S. cerevisiae cells depleted of Rft1p but having intact O-glyco-
sylation and GPI anchoring suggested that RFT1 is a flippase
enabling translocation of M5-DLO across the ER membrane
(17). However, this interpretation was challenged by subse-
quent biochemical studies, where flipping of M5-DLO was
assayed in vitro using proteoliposomes containing Triton
X-100-extracted yeast ER membrane proteins (19, 20). Flipping
of M5-DLO occurred robustly in the absence of Rft1p; e.g. when
proteoliposomes were reconstituted with fractionated ER
membrane proteins, M5-DLO translocation activity was found
in fractions devoid of Rft1p (19). Similar experiments using
sealed microsomes confirmed these findings (21). Hence, it was
postulated that S. cerevisiae Rft1p has only an indirect involve-
ment in the translocation of M5-DLO (19 –21).

More recently, the role of RFT1 was revisited using T. brucei
as a model organism. By complementation of yeast lacking
RFT1 function, T. brucei RFT1 (TbRFT1; Tb927.11.11670) was
shown to represent a functional homolog of S. cerevisiae Rft1p
(22). TbRFT1 null procyclic trypanosomes grew nearly nor-
mally and had normal steady-state levels of mDLO and reduced
but still significant N-glycosylation, indicating robust M5-DLO
flippase activity. Nevertheless, TbRFT1 null parasites had
30 –100-fold greater steady-state levels of M5-DLO when com-
pared with wild-type trypanosomes. Fluorophore-assisted car-
bohydrate electrophoresis analysis of N-glycans released from
N-linked glycoproteins showed that all N-glycans in the
TbRFT1 null cells originate from mDLO, indicating that the
M5-DLO excess is not used for glycosylation. Together, these
results suggested that rather than facilitating M5-DLO flipping,
RFT1 appears to promote conversion of M5-DLO to mDLO
by another mechanism, possibly by acting as an M5-DLO
chaperone (22).

We now report that the lack of TbRFT1 in T. brucei procyclic
forms not only affects N-glycosylation but also GPI anchor gly-

cosylation. In addition, we unexpectedly localize TbRFT1 to
both the ER and the Golgi. These results suggest that RFT1 has
a pleiotropic influence on protein glycosylation.

Results and Discussion

Procyclins of TbRFT1 Null Cells Exhibit Reduced Apparent
Molecular Masses—Based on our previous observation that the
lysosomal marker protein p67 is underglycosylated in TbRFT1
null mutants (22), we investigated whether a similar glycosyl-
ation phenotype could also be observed for the major surface
coat protein of T. brucei procyclic forms, EP procyclin. EP
procyclins are encoded by three different genes, EP1–3, with
EP1 and EP3 proteins each containing a single N-glycosyla-
tion site, whereas EP2 and the other subclass of procyclin,
GPEET, are not N-glycosylated (11, 23, 24). The relative
abundance of EP1–3 and GPEET varies among trypanosome
strains and culture conditions (11, 12, 25) and during tsetse
infection (26, 27). In the strain used in this study, T. brucei
Lister 427, GPEET represents the predominant surface pro-
tein, but EP is also expressed (25). Analysis by SDS-PAGE
and immunoblotting revealed a smaller apparent molecular
mass of EP in TbRFT1 null cells when compared with WT
trypanosomes (Fig. 1B). Treatment of EP from WT cells with
protein N-glycosidase F (PNGase) to release protein N-gly-
cans (Fig. 1A) reduced its apparent molecular mass. How-
ever, the apparent size of de-N-glycosylated EP from WT
trypanosomes was larger than that of EP from TbRFT1 null
cells, which was unaffected by PNGase treatment (Fig. 1B).
Together, these results indicate that the altered molecular
mass of EP is not only due to altered N-glycosylation in
TbRFT1 null parasites but involves other modifications
caused by lack of TbRFT1.

TbRFT1 Null Procyclins Have Truncated GPI Anchor Side
Chains—Because all EP isoforms, as well as GPEET, are GPI-
anchored (23, 28), we hypothesized that decreased glycosyla-
tion of the GPI anchor side chain may contribute to the
observed phenotype. The procyclin GPI anchors are modified
by a large heterogeneous, branched side chain comprising poly-
N-acetyllactosamine and lacto-N-biose units that may be
capped with sialic acid residues (10, 11) (Fig. 1A). Partial or
complete loss of this glycan moiety would lead to reduced
apparent molecular masses of GPEET and EP. Hence, we ana-
lyzed the procyclin GPI anchors by in vivo labeling of trypano-
somes with [3H]ethanolamine ([3H]Etn), which gets incorpo-
rated into the GPI core structure (23, 25). SDS-PAGE and
fluorography showed that GPEET, migrating with an apparent
molecular mass of 22–29 kDa, was readily labeled with [3H]Etn
in WT trypanosomes (Fig. 1C). Labeling of GPEET was also
observed in TbRFT1 null parasites; however, the protein
migrated with a lower molecular mass when compared with
WT trypanosomes (Fig. 1C). To eliminate molecular mass dif-
ferences present in the protein part of GPEET, extracts were
treated with Pronase, which has been shown to digest the entire
protein portion of GPEET down to the C-terminal glycine
residue (25). The resulting GPI anchor was again analyzed by
SDS-PAGE and fluorography and showed a clear difference
in molecular mass between WT and TbRFT1 null parasites
(Fig. 1C).

RFT1 and GPI Anchor Glycosylation
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To confirm that the GPEET polypeptide itself is not trun-
cated in TbRFT1 null parasites, its mass was analyzed by
MALDI-TOF-MS after sequential treatment with aqueous
hydrofluoric acid (to remove the GPI anchor, leaving ethanol-
amine attached to the C-terminal amino acid (Fig. 1A)) and
mild trifluoroacetic acid (to cleave Asp-Pro bonds within the EP
sequence (Fig. 1A)) (12). The results in Fig. 2, A and B, show that
both WT and �Tbrft1 cells express the same GPEET fragments
GP-4 and GP-13, representing proteins lacking 4 and 13,
respectively, N-terminal amino acids. Furthermore, the masses
are consistent with the presence of ethanolamine linked to Gly,
further corroborating that �Tbrft1 cells are not defective in the
transfer of GPIs to proteins. In addition, a series of EP procyclin
C-terminal fragments was also detected.

To determine the degree of GPI underglycosylation in
�Tbrft1 cells, butan-1-ol extracts (rich in procyclins) were
analyzed by GC-MS. As expected, although the WT sample
yielded a composition of Man:Gal:GlcNAc:Sia of 1.0:1.4:0.4:
0.2, �Tbrft1 cells showed an �7-fold reduction in the overall
GPI sugar content, resulting in a ratio of Man:Gal:GlcNAc:Sia
of 1.0:0.2:0.1:�0 (Sia were not detectable). A similar reduction
in the overall sugar composition of another �Tbrft1 mutant (i.e.

B1 cells (22)) was also observed by GC-MS (not shown). Col-
lectively, these results show that trypanosomes lacking
TbRFT1 express procyclins with truncated GPI anchor side
chains containing fewer poly-N-acetyllactosamine/lacto-N-
biose repeats and sialic acids, thus explaining the observed
reductions in apparent molecular masses after SDS-PAGE.

Procyclin GPI Anchor Size Is Restored by Ectopically Ex-
pressed TbRFT1—To study whether the observed differences in
EP and GPEET molecular masses between WT and TbRFT1
null mutants are indeed due to the lack of TbRFT1, we gener-
ated add-back mutants by expressing HA-tagged or untagged
copies of TbRFT1 in the �Tbrft1 background. If functional,
these ectopically expressed proteins are expected to restore the
molecular masses of EP and GPEET to wild-type sizes. Immu-
noblotting using antibodies against the HA epitope demon-
strated that RFT1-HA was expressed in the respective clones
(Fig. 3A). In addition, the results showed that in TbRFT1 null
parasites expressing HA-TbRFT1 or untagged TbRFT1, the
apparent molecular mass of EP was comparable with wild-type
EP procyclin (Fig. 3B), indicating that both tagged and untagged
TbRFT1 are functional and restored EP glycosylation as well as
GPI glycan maturation. A similar result was obtained by ana-
lyzing [3H]Etn-labeled EP and GPEET using SDS-PAGE and
fluorography (Fig. 3C).

GPI Precursor Synthesis and in Vitro GPI Galactosylation Are
TbRFT1-independent—To study whether the lack of TbRFT1
affects the formation of PP1, the GPI precursor added to pro-
tein in the ER (29), trypanosomes were cultured in the presence
of [3H]Etn, which becomes incorporated into all ethanolamine-
capped GPI precursors. Analysis of extracts from WT, TbRFT1
null, and TbRFT1 addback parasites by TLC revealed that PP1

FIGURE 1. Schematic representation of procyclin glycosylation and anal-
ysis of GPI-anchored proteins in TbRFT1 null cells. A, most procyclin iso-
forms (except EP2 and GPEET) are modified by a homogeneous triantennary
Man5GlcNAc2 glycan near the N terminus. The GPI anchor of all procyclins is
modified with several N-acetyllactosamine or lacto-N-biose repeats, which
may be capped with sialic acids depending on the presence of blood sialogly-
coconjugates. These repeats are linked to the middle mannose of the GPI
anchor core via two consecutive galactose residues (dotted box), which are
probably added in the ER as suggested in Fig. 2. The C-terminal regions of EP
procyclins consist of 22–30 Glu-Pro repeats. PI, phosphatidylinositol. B, immu-
noblotting analysis of EP procyclins isolated from WT and TbRFT1 null (�rft1)
cells. Denatured proteins were treated with (�) or without (�) PNGase F to
remove N-glycans and then separated by SDS-PAGE. After electrotransfer to
membranes, EP was visualized by enhanced chemiluminescence using
anti-EP antibody and HRP-conjugated anti-mouse IgG. C, [3H]ethanolamine
labeling and fluorography of GPI-anchored proteins from WT and TbRFT1 null
(�rft1) cells. Trypanosomes were grown in the presence of [3H]ethanolamine,
and GPI-anchored proteins were extracted from the delipidated protein pel-
let using 9% butan-1-ol. Extracts incubated in the absence (�) or presence
(�) of Pronase to remove the protein portions of GPEET and EP were sepa-
rated by SDS-PAGE and analyzed by fluorography.

FIGURE 2. Negative-ion MALDI-TOF-MS analysis of procyclins after
removal of the GPI anchors. A and B, butan-1-ol extracts from WT (A) and
�rft1 (B) cells were subjected to 48% aqueous hydrofluoric acid dephos-
phorylation followed by mild trifluoroacetic acid hydrolysis to remove the
GPI anchor and generate EP procyclin peptides. The resulting polypep-
tides, corresponding to the C-terminal portions of procyclins, were ana-
lyzed by negative-ion MALDI-TOF-MS. GP(�4) and GP(�13) refer to GPEET
fragments lacking 4 and 13, respectively, amino acids at the N terminus. EP
isoforms EP1-1 (I) (P(EP)nG-Etn) and EP1-1 (II) (PDP(EP)nG-Etn) represent
C-terminal mild acid fragments (12). EP3-5 is an unusual form containing
21 EP repeats (49).
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was the major [3H]Etn-labeled lipid irrespective of the presence
or absence of TbRFT1 (Fig. 4A).

Assembly of the GPI core structure and attachment to pro-
tein occurs in the ER (30 –32). At present, it is unclear whether
the glycan modification at the central mannose residue starts
before or after GPI attachment to protein in the ER, or on pro-
tein-bound GPI anchors in the Golgi. It is known that galactose
is added in vitro to GPI anchor precursors in bloodstream form
T. brucei (33), suggesting the presence of ER-resident galacto-
syltransferases that are able to act on GPI precursors. To date,
only two T. brucei glycosyltransferases involved in GPI pro-
cessing are known: GT8 and GT3. However, both seem to local-
ize to the Golgi, with GT8 mediating the transfer of the first
GlcNAc moiety to the terminal digalactose moiety of the imma-
ture GPI anchor (34, 35) and GT3 attaching a galactose residue
to GlcNAc (36). To study whether decreased galactosylation
in the ER may cause underglycosylation of the GPI anchors in
TbRFT1 null cells, we pulse-labeled crude membrane prepara-
tions from TbRFT1 add-back and TbRFT1 null parasites
with [3H]GDP-mannose ([3H]GDP-Man) in the presence of
UDP-GlcNAc and chased the labeled GPI precursors with non-
radiolabeled GDP-Man and UDP-Gal. Tunicamycin was added
to the assays to inhibit formation of the N-glycan precursor
dolichyl-pyrophosphate GlcNAc (Dol-PP-GlcNAc). TLC anal-
ysis of 3H-labeled GPI lipids after extraction with chloroform/
methanol/water followed by butan-1-ol-water partitioning
showed that additional more polar species were formed during
the chase with UDP-Gal (Fig. 4B, green arrows). However, we
observed no differences in the galactosylation pattern between
wild-type and TbRFT1 null cells, indicating that galactosylation
of GPI precursors in the ER is not affected by lack of TbRFT1.

The ER lumenal mannose donor dolichol-phosphate man-
nose (Dol-P-Man) is one of the most prominent radiolabeled
lipid species after pulse labeling membranes with [3H]GDP-
Man (Fig. 4B). As expected, Dol-P-Man as well as the early GPI
intermediate Man�1– 4GlcN�1– 6-myo-inositol phospholipid
(Man1-GlcN-PI) almost completely disappeared during the
chase. Interestingly, extracts from both pulse-labeled and
chase-labeled �Tbrft1 membranes contained additional
polar mannose-containing lipids (Fig. 4B, blue arrows).
A comparison with extracts from membranes labeled in the
absence of tunicamycin (Fig. 4C) shows that compounds with
similar Rf values are also formed by WT membranes as long as
N-glycan synthesis is enabled. Treatment of the labeled lipids
with mild acid led to degradation of Dol-P-Man as well as the
unknown polar species from both wild-type and mutant
extracts (Fig. 4, C and D). Conversely, the acid-sensitive lipids

were not cleaved by the GPI-specific phospholipase D, whereas
the known GPI intermediates were readily hydrolyzed (Fig. 4D).
Together, these results suggest that the unknown species made
by mutant membranes are tunicamycin-insensitive dolichol-
linked oligomannose species that most likely originate from a
pool of preformed (early) intermediates. We conclude that
side-chain glycosylation of newly synthesized GPI precursors
occurs normally in �Tbrft1 membranes.

Possible Roles of TbRft1 in GPI Anchor Modification—The
defects in GPI anchor maturation of TbRFT1 null cells can be
interpreted in two ways. TbRFT1 may have a direct role in GPI
anchor glycan modification that is independent of its function
in N-glycosylation. Alternatively, the defect may result from
incomplete N-glycosylation of a glycosyltransferase involved in
GPI anchor modification, leading to decreased activity and thus
incomplete glycan modification.

First, we considered the possibility that the appearance of
truncated GPI anchors may be caused by a glycosylation defect
occurring in the Golgi. To study whether TbRFT1 is present
exclusively in the ER, as suggested for yeast (17), we analyzed
the localization of the functional HA-tagged copy of TbRFT1
in the TbRFT1 null background using immunofluorescence
microscopy. Co-staining of TbRFT1-HA with an antibody
against the ER lumenal chaperone BiP confirmed the expected
localization of TbRFT1 in the ER, where it was predominantly
found in the perinuclear region (Fig. 5A). Interestingly, how-
ever, co-staining of TbRFT1-HA with an antibody against the
Golgi resident protein TbGRASP (37) also showed co-localiza-
tion (Fig. 5A). In �70% of parasites examined (n � 100),
TbRFT1-HA co-stained with a spot located between the
nucleus and the kinetoplast and representing the Golgi. To
exclude the possibility that the observed co-localization of
TbRFT1 with TbGRASP is unspecific, we analyzed the localiza-
tion of an HA-tagged membrane-bound member of the EMC
family of proteins, TbEMC3 (Tb927.10.4760), which has been
shown in yeast to localize to the ER (38). The results showed
�35% co-localization of TbEMC3-HA with TbGRASP (Fig.
5B). Although we cannot completely exclude the possibility
that a portion of TbRFT1 is localized to the Golgi as a result
of saturation of the retention system for ER membrane pro-
teins, we consider it unlikely for the following reasons. (i)
TbRFT1-HA shows a similar dual localization when expressed
by a different, tetracycline-inducible expression vector in
T. brucei 427 wild-type cells (Fig. 5C); (ii) overexpression of
another ER-localized membrane protein, TbEPT (T. brucei
ethanolamine phosphotransferase), using the same tetracy-
cline-inducible vector showed no Golgi localization and was

FIGURE 3. Ectopic expression of TbRFT1 and TbRFT1-HA. EP and/or GPEET from WT cells, TbRFT1 null cells (�rft1), and TbRFT1 null cells expressing a
HA-tagged (�) or untagged (�) ectopic copy of TbRFT1 (�rft1/RFT1) were analyzed by SDS-PAGE and immunoblotting. A and B, enhanced chemiluminescence
was used to visualize HA (A) or EP (B) using corresponding first and secondary antibodies. C, EP and GPEET in WT, TbRFT1 null cells (�rft1), and TbRFT1 null cells
expressing a HA-tagged (�) or untagged (�) ectopic copy of TbRFT1 (�rft1/RFT1) were labeled with [3H]ethanolamine, extracted, and analyzed as described in
the legend for Fig. 1. The sizes of wild-type (solid lines) and mutant (dashed lines) proteins are marked (blue, EP; green, GPEET).
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specifically targeted to the perinuclear ER (39); and (iii) there is
no precedent in trypanosomes for mislocalization of ER pro-
teins on overexpression of a single ER resident. Dual localiza-
tion of trypanosome proteins in both the ER and the Golgi is not
unique to TbRFT1 but has been reported before (40). In con-
trast, no co-localization was observed between TbRFT1-HA
and cathepsin L, a marker for the T. brucei lysosome (41) that
also localizes between the nucleus and the kinetoplast (Fig. 5D).
The role of TbRFT1 in glycosylation in the Golgi remains spec-
ulative. In a recent publication, RNAi-mediated silencing of the
nucleotide sugar transporter TbNST4 responsible for import
of UDP-GlcNAc, GDP-mannose, and UDP-GalNAc into the
Golgi resulted in production of underglycosylated EP procyclin
in T. brucei procyclic forms (42). In addition, defective forms of
GT3 (36) or GT8 (35, 43) resulted in impaired GPI glycan mat-
uration and reduced protein N-glycosylation. It is possible that

a lack of TbRFT1 affects Golgi resident proteins involved in
glycosylation, by directly interacting with these proteins or by
affecting their glycosylation status.

To study the second possibility, we analyzed GPEET procy-
clin in cells grown in the presence of tunicamycin during 10
days to inhibit N-linked glycosylation. The results show that the
molecular mass of GPEET was reduced by tunicamycin treat-
ment to that of GPEET in �Tbrft1 cells (Fig. 6A). Binding of
FITC-labeled concanavalin A to parasites followed by analysis
by FACS demonstrated that tunicamycin effectively inhibited
N-glycosylation (Fig. 6B).

Concluding Remarks—We report several new findings that
implicate RFT1 in a wider range of glycosylation processes than
previously demonstrated. Procyclic form trypanosomes lacking
TbRFT1 not only have decreased protein N-glycosylation but
also produce underglycosylated GPI anchors. The defect is not

FIGURE 4. Analysis of GPI precursor formation. A, analysis of in vivo [3H]Etn-labeled GPI precursors PP3 and PP1 extracted from WT, TbRFT1 knock-out (�rft1),
and addback (�rft1/RFT1) cells. Trypanosome densities were adjusted before the addition of [3H]Etn to the cultures. After 4 h of labeling, GPI precursors were
extracted, separated by TLC, and visualized using a radioactivity TLC scanner. The migration of PP1, PP3 (50), and phosphatidylethanolamine (PE) is indicated.
B–D, in vitro [3H]GDP-mannose (GDP-Man) labeling of GPI precursors. B, membranes from hypotonically lysed TbRFT1 knock-out (�rft1) and addback (�rft1/
RFT1) cells were pulse-labeled (p) with [3H]GDP-Man, followed by a chase (c) with non-radioactive GDP-Man in the presence (�) or absence of (�) UDP-
galactose. 3H-labeled glycolipids were extracted, separated by TLC, and visualized by fluorography. Galactosylated GPI intermediates are indicated with green
arrows. Blue arrows indicate the additional [3H]GDP-mannose-containing species formed in �rft1 extracts. C, analysis of 3H-labeled glycolipids from wild-type
and �rft1 after a 30-min labeling with [3H]GDP-Man in the presence (�) or absence (�) of tunicamycin (Tu) (lanes 1– 4). Lanes 5 and 6 show aliquots labeled in
absence of tunicamycin that were treated with 0.1 M HCl before TLC. D, biochemical analysis of 3H-labeled glycolipids from �rft1 and �rft1/RFT1 after a 30-min
labeling with [3H]GDP-Man in the presence (�) of tunicamycin. Primary lipid extracts were split and treated with GPI-specific phospholipase D (GPI-PLD) or 0.1
M HCl as indicated. Lipids were re-extracted after treatment and separated by TLC along with an aliquot of untreated primary extract.
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associated with the synthesis of the anchor but with GPI pro-
cessing/maturation steps that likely occur in the Golgi appara-
tus. A role for TbRFT1 in the Golgi would be consistent with
our observation that TbRFT1-HA is dually localized in the ER
and Golgi. Our observations open new questions regarding the
enigmatic function of TbRFT1 and its orthologs in yeast and
mammalian cells.

Experimental Procedures

Materials—Unless otherwise stated, all reagents were of ana-
lytical grade and purchased from Sigma-Aldrich (Buchs, Swit-
zerland) or Merck (Darmstadt, Germany). Restriction enzymes
were from Fermentas (St. Leon-Rot, Germany), and antibiotics
were from Sigma-Aldrich, InvivoGen (Nunningen, Switzer-

FIGURE 6. Tunicamycin-mediated inhibition of N-glycosylation in vivo.
Cells were grown in the presence (�) or absence (�) of 1 �g/ml tunicamycin
(Tu) during 10 days. A, proteins extracted from 2 � 107 cells were separated by
SDS-PAGE, and GPEET procyclin was detected by immunoblotting using anti-
GPEET antibody 5H3. B, cell surface N-glycosylation levels were assessed by
lectin binding and flow cytometry using FITC-conjugated concanavalin A.
The shift in cell surface fluorescence intensity reflects inhibition of N-glyco-
sylation by tunicamycin.

FIGURE 5. Localization of TbRFT1 in procyclic form parasites. A, functional TbRFT1-HA was co-stained with the ER marker protein BIP (upper panels) or the
Golgi marker TbGRASP (lower panels). The merged channels (composite) show overlap (yellow color) of the BIP and TbRFT1-HA signals mainly in the perinuclear
zone, with some weaker signal distributed throughout the rest of the cells. Co-staining with the Golgi marker TbGRASP shows that the brightest spots of the
HA signal co-localize with the Golgi signal. Some areas were zoomed for better visibility (panels on the right). DIC, differential interference contrast. B,
trypanosomes expressing TbEMC3-HA were co-stained with TbGRASP (upper panels). The merged channels (composite) show little overlap (yellow color) of the
signals. Golgi-stained areas were zoomed for better visibility (panels on the right). The lower panels show co-staining of TbRFT1-HA with TbGRASP done in
parallel with the staining shown in the upper panels. Again, TbRFT1 co-localized with TbGRASP. DNA was stained with DAPI (blue). C, co-staining of TbRFT1-HA
(RFT-HA) with the Golgi marker TbGRASP in cells transiently expressing TbRFT1-HA under the control of a tetracycline operator. Tetracycline (1 �g/ml) was
added to the growth medium for 20 h prior to preparation of slides. D, functional TbRFT1-HA was co-stained with the lysosomal marker protein cathepsin L
(CatL) and DAPI as indicated. The composite shows little overlap (yellow color) of the signals. Cathepsin L-stained areas were zoomed for better visibility (panels
on the right).
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land), or Invitrogen (Basel, Switzerland). [1-3H]Etn (40 – 60
Ci/mmol) and [3H]GDP-Man were from American Radiola-
beled Chemicals Inc. (St. Louis, MO). BioMax MS and MXBE
films were from GE Healthcare (Buckinghamshire, UK) or Car-
estream Health (Rochester, NY).

Trypanosome Cultures—T. brucei strain Lister 427 procyclic
forms were cultured at 27 °C in SDM-79 containing 5% heat-
inactivated fetal bovine serum. TbRFT1 knock-out trypano-
somes (�Tbrft1, TbRFT1 null) (22) were grown under the same
conditions, but in the presence of 1 �g/ml G418 for the single
allele knock-out and an additional 10 �g/ml blasticidin for the
double allele knock-out clones. TbRFT1 addback mutants in
�Tbrft1 double allele knock-out cells were selected and grown
in the same medium, with an additional 2 �g/ml puromycin.
T. brucei strain Lister 427 29-13 (TetR T7RNAP) procyclic
forms for tetracycline-inducible gene expression were cultured
at 27 °C in SDM-79 containing 10% heat-inactivated fetal
bovine serum, 25 �g/ml hygromycin, and 15 �g/ml G418.

Generation of T. brucei RFT1 Addback Procyclic Forms—
The generation of the T. brucei strain Lister 427 procyclic
form TbRFT1 null cell line �Tbrft1::NEO/�Tbrft1::BLAST
has been described previously (22). For the generation of
procyclic trypanosomes constitutively expressing TbRFT1
or 2� HA-tagged TbRFT1 (TbRFT1-HA) in the �Tbrft1
background (�Tbrft1/RFT1 and �Tbrft1/RFT1-HA), the
ORF of TbRFT1 (Tb927.11.11670) was PCR-amplified with
primers TbRFT1�_fwd (tgtagcaagcttgaattcatggacttcaaacga-
cagctg) and TbRFT1�_rev (ccccgcagatctctactcgccgcttcttt-
ttga) or TbRFT1_fwd and TbRFT�-HA rev (ccccgcaga-
tctctatgcatagtctggtacgtcataagggtatgcatagtctggtacgtcataagg-
gtatgcatagtctggtacgtcataagggtactcgagctcgccgcttctttttgagct),
bxrespectively, and ligated into vector pG-EGFP�LII � (44)
(kindly provided by Isabel Roditi, University of Bern, Bern,
Switzerland), previously digested with HindIII and BglII. The
resulting vectors pG-RFT1�LII � and pG-RFT1-HA�LII �
were digested with NotI prior to transfection into �Tbrft1 cells.
Clones were obtained by limiting dilution under antibiotic
selection using 2 �g/ml puromycin. For the expression of tet-
racycline-inducible TbRFT1-HA, the gene was PCR-amplified
using primers TbRFT1-HA_fwd (tgtagcgggcccatggacttcaaacga-
cagctg) and TbRFT1-HA_rev (cctcatgcatctagactcgccgcttctttttgagct),
digested with ApeI and XbaI, and ligated into equally digested vec-
tor pALC14-HA (original vector pALC14 kindly provided by
André Schneider, University of Bern), containing a 3� HA tag
downstream of the C-terminal restriction site. The resulting
vector pALC14-TbRFT1-HA was linearized with NotI prior to
transfection into T. brucei, strain Lister 427 29-13 procyclic
forms. Clones were obtained by limiting dilution under antibi-
otic selection using 2 �g/ml puromycin.

Immunofluorescence Microscopy of Trypanosomes—2 � 106

cells were harvested at mid-log phase, washed twice in cold PBS
(137 mM NaCl2, 2.7 mM KCl, 10 mM Na2PO4, 2 mM KH2PO4, pH
7.4), and spotted on microscope slides. After adherence, cells
were fixed with 4% paraformaldehyde in PBS for 5 min, washed
with cold PBS, and permeabilized with 0.2% (w/v) Triton X-100
in PBS for 5 min. Subsequently, cells were blocked with 2%
(w/v) bovine serum albumin in PBS prior to incubation with
blocking solution containing primary antibodies (mouse

monoclonal anti-HA 11, 16B12 (1:200; Enzo Life Sciences; cat-
alog number ENZ-ABS118-0500, lot 04211508), rabbit poly-
clonal anti-BiP (1:2500) and rabbit polyclonal anti-cathepsin L
(1:500) (both kindly provided by J. Bangs, University of Buffalo,
Buffalo, NY), and rabbit polyclonal anti-TbGRASP (1:1500;
kindly provided by G. Warren, Vienna Biocenter, Vienna, Aus-
tria)). Fluorescent secondary antibodies with different excita-
tion and emission maxima were used to visualize TbRFT1-HA
separately from BiP, TbGRASP, and cathepsin L, respectively
(Alexa Fluor goat anti-mouse 488 (Invitrogen, catalog number
A11001, lot 1170048) and goat anti-rabbit 594 (Invitrogen, cat-
alog number A11005, lot 1750828), diluted 1:1000 in blocking
solution). Coverslips were mounted on dried slides with
VECTASHIELD� containing DAPI (Vector Laboratories) to
visualize the nuclei. Pictures were taken with a Leica DM 16000
B inverted microscope combined with a Leica DFC360 FX cam-
era. Image deconvolution (3D deconvolution) and further pro-
cessing were performed using Leica LAS X software and ImageJ
(National Institutes of Health), respectively.

[3H]Etn Labeling of GPI Precursors and GPI-anchored
Proteins—For in vivo radiolabeling of procyclins, procyclic
form trypanosomes were cultured in the presence of [3H]Etn (2
�Ci/ml) during 16 h to a density of �1.5 � 107 cells/ml, as
described before (25). Cells were counted, harvested by centrif-
ugation, and washed twice in cold TBS (10 mM Tris-HCl, pH
7.5, 144 mM NaCl). Bulk lipids from up to 2.5 � 108 cells were
extracted from the cell pellets using 2 � 10 ml chloroform/
methanol (2:1, v/v), and GPI precursors and free GPIs were
extracted using 3 � 5 ml of chloroform/methanol/water (10:
10:3, v/v/v) (25). GPI-anchored proteins were extracted from
the remaining protein pellet using 2 � 1 ml of 9% (v/v) butan-
1-ol in water during 2 h on ice, followed by 10 min of centrifu-
gation at 17,000 � g. The resulting supernatants were pooled,
dried under a stream of nitrogen, and dissolved in electropho-
resis sample buffer containing 2.5% (w/v) SDS. Butan-1-ol-in-
soluble material was further extracted with 0.1% (w/v) Triton
X-100 in 20 mM Tris (pH 7.4) for 10 min at 95 °C (25). Radioac-
tivity in the butan-1-ol and Triton X-100 extracts was deter-
mined by liquid scintillation counting of small aliquots. For the
analysis of [3H]Etn-labeled GPI precursors, all cultures were
adjusted to 1.5 � 107 cells/ml prior to incubation with 4 �Ci/ml
[3H]Etn during 4 h. After washing with TBS and extraction of
bulk lipids using 2 � 10 ml chloroform/methanol (2:1, v/v), GPI
precursors were extracted by 3 � 5 ml of chloroform/metha-
nol/water (10:10:3, v/v/v). The resulting supernatants were
pooled, dried under a stream of nitrogen, and partitioned
between 0.5 ml of butan-1-ol and water. After a second extrac-
tion of the resulting water phase with 0.5 ml of water-saturated
butan-1-ol, butanol phases were pooled and dried using a
SpeedVac apparatus. Dry GPI lipids were resuspended in 50 �l
of chloroform/methanol/water (10:10:3, v/v/v) and separated
by TLC as described below.

Protein Analysis—Proteins from butan-1-ol and Triton
X-100 extracts were separated by SDS-PAGE using 12% poly-
acrylamide gels. [3H]Etn-labeled proteins were analyzed by
soaking the fixed gel in AmplifyTM for 1 h, drying at 80 °C for
2 h, and exposing to MXBE film at �70 °C. HA-tagged TbRFT1,
EP, and GPEET procyclins were analyzed by immunoblotting
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onto polyvinylidene difluoride membranes and enhanced
chemiluminescence using mouse anti-HA antibody (HA11,
diluted 1:3000 in TBS containing 5% skimmed milk powder;
Enzo Life Sciences), mouse anti-EP antibody (mouse monoclo-
nal anti-EP 247, diluted 1:1000 in TBS, 5% milk; Cedarlane
Labs, Burlington, Ontario Canada; catalog number CLP001A,
lot P115), and mouse anti-GPEET 5H3 antibody (diluted 1:5000
in TBS, 5% milk; Cedarlane Labs, lot number 991109 (45)),
respectively, followed by HRP-conjugated anti-mouse IgG
(diluted 1:5000 in TBS, 5% milk; Dako, Baar, Switzerland).
MXBE films were exposed to ECL-activated membranes
(SuperSignal West Pico, Pierce-Thermo Fisher) for 30 s to a few
minutes.

Mass Spectrometry Analysis—For the analysis of procyclin
C-terminal polypeptides, total procyclins were purified by
sequential extraction with chloroform/methanol/water (10:
10:3, by volume) and 9% (v/v) butan-1-ol as described above.
Butan-1-ol extracts were then dried, dephosphorylated with
48% anhydrous hydrofluoric acid for 24 h at 0 °C, hydrolyzed
with mild (40 mM) trifluoroacetic acid, and then analyzed by
negative-ion MALDI-TOF on an ABI Voyager DE-STR instru-
ment using sinapinic acid as the matrix (12). To determine the
total monosaccharide composition of procyclins, samples were
mixed with 200 pmol of scyllo-inositol (as internal standard)
and analyzed by GC-MS as described elsewhere (46).

Enzyme Treatments—For PNGase treatment, parasites were
lysed by boiling 10 min at 100 °C in denaturing buffer (0.5%
SDS, 40 mM DTT) and incubated with PNGase F (New England
Biolabs) according to the manufacturer’s instructions in a
buffer containing 1% Nonidet P-40 during 1 h at 37 °C. For
Pronase treatment, 3H-labeled GPI extracts were dried under a
stream of nitrogen, re-dissolved in a buffer containing 20 mM

Tris (pH 7.5) and 5 mM CaCl2, and incubated with Pronase (0.3
mg/ml) during 16 h at 37 °C.

Cell-free GPI Glycosylation Analysis—Membranes for cell-
free labeling of GPI precursors were collected from trypano-
some cultures grown to a density of 107 cells/ml by hypotonic
lysis in water containing 0.1 mM tosyl-L-lysyl-chloromethane
hydrochloride (TLCK) and 1.25 �g/ml leupeptin. Pulse-chase
radiolabeling of GPI precursors with [3H]GDP-Man was per-
formed essentially according to the protocol developed by Mas-
terson et al. (47) as described by Leal et al. (48). If indicated,
experiments were performed in the presence of 0.4 mg/ml tuni-
camycin in the assay buffer to inhibit the formation of dolichol-
linked N-glycan precursors. In pulse-chase experiments, mem-
branes from 1.5 � 108 cells were labeled with 3 �Ci of
[3H]GDP-Man and 1 mM UDP-GlcNAc for 8 min at 37 °C, fol-
lowed by a 75-min chase with 2 mM non-radioactive GDP-Man.
For the analysis of GPI galactosylation, 8 mM UDP-Gal was
added during the chase with GDP-Man. GPI lipids were
extracted as described (47). Butan-1-ol extracts were separated
by TLC on Silica Gel 60 plates (Merck Millipore) using chloro-
form/methanol/water (10:10:3, v/v/v) as solvent system and
analyzed using a radioactivity TLC scanner (Berthold Technol-
ogies, Regensburg, Switzerland). For autoradiography, TLC
plates were treated with EN3HANCETM spray (Perkin Elmer)
prior to exposure to film at �70 °C.

Flow Cytometry—Trypanosomes were grown in the presence
or absence of tunicamycin (1 �g/ml) during 10 days. Approxi-
mately 1 � 107 parasites were harvested by centrifugation at
4 °C for 10 min at 1500 � g in 15-ml centrifuge tubes, washed
twice in ice-cold SDM-79, and resuspended in 200 �l of SDM-79
containing 0.5 mM MnCl2. Concanavalin A-FITC conjugate was
added to a final concentration of 1.5 �g/ml. After 1 h of incubation
in the dark on ice, the cells were diluted with ice-cold PBS to a
volume of 5 ml, pelleted, resuspended in a final volume of 2 ml
(final concentration 5 � 106/ml PBS), and passed through a cell-
filter cap prior to analysis by FACSCalibur (BD Biosciences). Data
were analyzed using flow cytometry software FlowJo.
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